3,822 research outputs found

    A method for economic evaluation of redundancy levels for aerospace systems

    Get PDF
    Principle comprises primary cost impacts, such as operational delays, reflown missions due to aborts, procurement of equipment, and vehicle expansion to accommodate additional equipment. Economics are estimated by criterion which is relatively insensitive to impertinent cost factors

    Surfaces for micrometeoroid impact crater detection

    Get PDF
    Surfaces for micrometeroid impact crater detectio

    The physical nature of interplanetary dust as inferred by particles collected at 35 km

    Get PDF
    Particles were collected at an altitude of 35 km by two flights of a volume sampling micrometeorite collector. The collection scheme is very sensitive and is capable of collecting a significant number of particles. Many of the particles collected have chemical compositions similar to solar or to iron meteorites. Morphology of collected particles indicates that both true micrometeorites and ablation products were collected

    Program management aid for redundancy selection and operational guidelines

    Get PDF
    Although this criterion was developed specifically for use on the shuttle program, it has application to many other multi-missions programs (i.e. aircraft or mechanisms). The methodology employed is directly applicable even if the tools (nomographs and equations) are for mission peculiar cases. The redundancy selection criterion was developed to insure that both the design and operational cost impacts (life cycle costs) were considered in the selection of the quantity of operational redundancy. These tools were developed as aids in expediting the decision process and not intended as the automatic decision maker. This approach to redundancy selection is unique in that it enables a pseudo systems analysis to be performed on an equipment basis without waiting for all designs to be hardened

    The Outer Edges of Dwarf Irregular Galaxies: Stars and Gas

    Full text link
    We have in recent years come to view dwarf galaxy evolution in the broader context of the cosmic evolution of large-scale structure. Dwarf galaxies, as the putative building blocks of hierarchical galaxy formation, and also as the most numerous galaxies in the Universe, play a central role in cosmic evolution. In particular, the interplay of galactic and intergalactic material around dwarf irregulars must be more extensive than in more massive disk galaxies because of their lower gravitational potential and lower interstellar pressures. The outer regions of dwarf irregular galaxies therefore yield vital clues to the dominant processes in this interaction zone. The Workshop addressed a number of questions related to the role of the outer regions in the evolution of dwarf galaxies and broader consequences. On-line Workshop Proceedings are at http://www.lowell.edu/Workshops/Lowell02/Comment: Summary of the 2002 Lowell Observatory Workshop, to appear in PASP Conference Highlights; 6 pp, uses aaspp4.sty. On-line Proceedings at http://www.lowell.edu/Workshops/Lowell02

    The Stellar Populations of Pixels and Frames

    Get PDF
    Derived from first physical principles, a few simple rules are presented that can help in both the planning and interpretation of CCD and IR-array camera observations of resolvable stellar populations. These rules concern the overall size of the population sampled by a frame as measured by its total luminosity, and allow to estimate the number of stars (in all evolutionary stages) that are included in the frame. The total luminosity sampled by each pixel (or resolution element) allows instead to estimate to which depth meaningful stellar photometry can be safely attempted, and below which crowding makes it impossible. Simple relations give also the number of pixels (resolution elements) in the frame that will contain an unresolved blend of two stars of any kind. It is shown that the number of such blends increases quadratically with both the surface brightness of the target, as well as with the angular size of the pixel (or resolution element). A series of examples are presented illustrating how the rules are practically used in concrete observational situations. Application of these tools to existing photometric data for the inner parts of the bulge of M31, M32 and NGC 147 indicates that no solid evidence has yet emerged for the presence of a significant intermediate age population in these objects.Comment: 28 pages, LaTeX file using aasms4.sty, 2 postscript figures To appear on: The Astronomical Journa

    Physical properties of interplanetary grains

    Get PDF
    Morphological analyses of micrometeorite craters found on lunar rocks and laboratory simulation experiments are used to formulate a meteoritic interplanetary dust particle for optical scattering calculations that is roughly spherical and has a density of 2g cm/3. The model particle has chondritic elemental abundances and also contains a high content of finely dispersed carbon

    Structure and Mass of a Young Globular Cluster in NGC 6946

    Get PDF
    Using the Wide Field Planetary Camera 2 on board the Hubble Space Telescope, we have imaged a luminous young star cluster in the nearby spiral galaxy NGC 6946. The cluster has an absolute visual magnitude M(V)=-13.2, comparable to the brightest young `super-star clusters' in the Antennae merger galaxy. UBV colors indicate an age of about 15 Myr. The cluster has a compact core (core radius = 1.3 pc), surrounded by an extended envelope. We estimate that the effective radius (Reff) = 13 pc, but this number is uncertain because the outer parts of the cluster profile gradually merge with the general field. Combined with population synthesis models, the luminosity and age of the cluster imply a mass of 8.2x10^5 Msun for a Salpeter IMF extending down to 0.1 Msun, or 5.5x10^5 Msun if the IMF is log-normal below 0.4 Msun. Depending on model assumptions, the central density of the cluster is between 5300 Msun pc^-3 and 17000 Msun pc^-3, comparable to other high-density star forming regions. We also estimate a dynamical mass for the cluster, using high-dispersion spectra from the HIRES spectrograph on the Keck I telescope. The velocity dispersion is 10.0 +/- 2.7 km/s, implying a total cluster mass within 65 pc of (1.7 +/- 0.9) x 10^6 Msun. Comparing the dynamical mass with the mass estimates based on the photometry and population synthesis models, the mass-to-light ratio is at least as high as for a Salpeter IMF extending down to 0.1 Msun, although a turn-over in the IMF at 0.4 Msun is still possible within the errors. The cluster will presumably remain bound, evolving into a globular cluster-like object.Comment: 33 pages, including 10 figures and 3 tables. Accepted for publication in the Astrophysical Journa
    corecore